

Microsoft Exchange Server 2013
PowerShell Cookbook
Second Edition

Jonas Andersson
Mike Pfeiffer

Chapter No. 10
"Exchange Security"

In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter NO.10 "Exchange Security"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Jonas Andersson is a devoted person who is constantly developing himself and his
skills. He started in the IT business in 2004 and worked at first in a support center
where he got his basic knowledge. In 2007 he started his career as a Microsoft
infrastructure consultant and from 2008 onwards his focus has been on
Microsoft Exchange.

Even though his focus is on Microsoft Exchange, his interests include migrations,
backup, storage, and archiving. At the start of 2010, he was employed at a large
outsourcing company a messaging specialist, specializing in Microsoft Exchange.
His work includes designing, implementing, and developing messaging
solutions for enterprise customers.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

http://www.packtpub.com/microsoft-exchange-server-2013-powershell-2e-cookbook/book

His unique knowledge makes him a key figure in large and complex migration projects
where he works with design and implementation. Examples of these projects include
migrations from the IBM Domino mail platform to Microsoft Exchange 2007/2010
and Office 365, using Quest Software with full coexistence between the systems for
mail flow, directory synchronization, and free busy lookups.

Apart from his daily job, he was active on TechNet forums, he also writes articles
at his blog (http://www.testlabs.se/blog), and Twitter and other
social media.

As a reward for the work in the community he was been awarded the
Microsoft Community Contributor Award both 2011 and 2012.

Mike Pfeiffer has been in the IT field for 15 years, and has been working on Exchange
for the majority of that time. He is a Microsoft Certified Master and a former Microsoft
Exchange MVP. These days he works at Microsoft as a Premier Field Engineer where
he helps customers deploy and maintain Microsoft Exchange and Lync Server solutions.
You can find his writings online at mikepfeiffer.net, where he occasionally blogs
about Exchange, Lync, and PowerShell-related topics.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

http://www.packtpub.com/microsoft-exchange-server-2013-powershell-2e-cookbook/book

Microsoft Exchange Server 2013
PowerShell Cookbook
Second Edition
This book is full of immediately usable task-based recipes for managing and maintaining
your Microsoft Exchange 2013 environment with Windows PowerShell 3.0 and the
Exchange Management Shell. The focus of this book is to show you how to automate
routine tasks and solve common problems. While the Exchange Management Shell
literally provides hundreds of cmdlets, we will not cover every single one of them
individually. Instead, we'll focus on the common, real world scenarios. You'll be able
to leverage these recipes right away, allowing you to get the job done quickly, and the
techniques that you'll learn will allow you to write your own amazing one-liners and
scripts with ease.

What This Book Covers
Chapter 1, PowerShell Key Concepts, introduces several PowerShell core concepts such
as command syntax and parameters, working with the pipeline, and flow control with
loops and conditional logic. The topics covered in this chapter lay the foundation for the
remaining code samples in each chapter.

Chapter 2, Exchange Management Shell Command Tasks, covers day-to-day tasks and
general techniques for managing Exchange from the command line. The topics include
configuring manual remote shell connections, exporting reports to external files, sending
e-mail messages from scripts, and scheduling scripts to run with the Task Scheduler.

Chapter 3, Managing Recipients, demonstrates some of the most common recipient-
related management tasks, such as creating mailboxes, distribution groups, and contacts.
You'll also learn how to manage server-side inbox rules, out of office settings, and import
user photos into the Active Directory.

Chapter 4, Managing Mailboxes, shows you how to perform various mailbox
management tasks that include moving mailboxes, importing and exporting mailbox
data, and the detection and repair of corrupt mailboxes. In addition, you'll learn how to
delete and restore items from a mailbox, manage the new public folders, and generate
some basic reports.

Chapter 5, Distribution Groups and Address Lists, takes you deeper into distribution
group management. The topics include distribution group reporting, distribution group
naming policies, and allowing end users to manage distribution group membership.
You'll also learn how to create address lists and hierarchal address books.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

http://www.packtpub.com/microsoft-exchange-server-2013-powershell-2e-cookbook/book

Chapter 6, Mailbox Database Management, shows how to set database settings
and limits. Report generation for mailbox database size, average mailbox size
per database, and backup status is also covered in this chapter.

Chapter 7, Managing Client Access, covers the managing of ActiveSync, OWA, POP,
and IMAP. It also covers the configuration of these components in Exchange 2013.
We'll also take a look at controlling connections from various clients, including
ActiveSync devices.

Chapter 8, Managing Transport Service, explains the various methods used to control
mail flow within your Exchange organization. You'll learn how to create, send, and
receive connectors, allow application servers to relay mail, and manage transport queues.

Chapter 9, High Availability, covers the implementation and management tasks related
to Database Availability Groups (DAGs). Topics include creating DAGs, adding mailbox
database copies, and performing maintenance on DAG members. It also covers the new
feature called automatic reseed.

Chapter 10, Exchange Security, introduces the new Role Based Access Control (RBAC)
permissions model. You'll learn how to create custom RBAC roles for administrators and
end users, and also how to manage mailbox permissions and implement SSL certificates.

Chapter 11, Compliance and Audit Logging, covers the new compliance and auditing
features included in Exchange 2013. Topics such as archiving mailboxes and discovery
search are covered here, as well as administrator and mailbox audit logging.

Chapter 12, Server Monitoring and Troubleshooting, shows you how to monitor and
report on service availability and resource utilization using PowerShell core cmdlets
and WMI. Event log monitoring and Exchange server role troubleshooting tactics
are also covered.

Chapter 13, Scripting with the Exchange Web Services Managed API, introduces
advanced scripting topics that leverage Exchange Web Services. In this chapter,
you'll learn how to write scripts and functions that go beyond the capabilities
of the Exchange Management Shell cmdlets.

Appendix A, Common Shell Information, is a reference for the variables, scripts,
and the filtering functions. These references will help you when writing scripts or
running interactive.

Appendix B, Query Syntaxes, is a reference for the Advanced Query Syntax
(AQS). Here are lots of different examples that can be used in the real world.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

http://www.packtpub.com/microsoft-exchange-server-2013-powershell-2e-cookbook/book

10
Exchange Security

In this chapter, we will cover the following:

  Granting users full access permissions to mailboxes

  Finding users with full access to mailboxes

  Sending e-mail messages as another user or group

  Working with Role Based Access Control (RBAC)

  Creating a custom RBAC role for administrators

  Creating a custom RBAC role for end users

  Troubleshooting Role Based Access Control

  Generating a certifi cate request

  Installing certifi cates and enabling services

  Importing certifi cates on multiple exchange servers

Introduction
When it comes to managing security in Exchange 2013, you have several options, depending
on the resources that you're dealing with. For example, you can allow multiple users to
open a mailbox by assigning them full access permissions on a mailbox object, but granting
administrators the ability to create recipient objects needs to be done through Role Based
Access Control (RBAC). Obviously, since the security for both of these components is handled
differently, we have unrelated sets of cmdlets that need to be used to get the job done, and
managing each of them through the shell will require a unique approach.

In this chapter, we'll take a look at several solutions implemented through the Exchange
Management Shell that address each of the components described previously, as well as
some additional techniques that can be used to improve your effi ciency when dealing with
Exchange security.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

http://www.packtpub.com/microsoft-exchange-server-2013-powershell-2e-cookbook/book

Exchange Security

320

Performing some basic steps
To work with the code samples in this chapter, follow these steps to launch the Exchange
Management Shell:

1. Log onto a workstation or server with Exchange Management Tools installed.

2. You can connect using a remote PowerShell if you, for some reason, don't have
Exchange Management Tools installed. Use the following command to do this:

$Session = New-PSSession -ConfigurationName Microsoft.Exchange `

-ConnectionUri http://tlex01/PowerShell/ `

-Authentication Kerberos

Import-PSSession $Session

3. Open the Exchange Management Shell by navigating to Start | All Programs |
Exchange Server 2013.

4. Click on the Exchange Management Shell shortcut.

To launch a standard PowerShell console, navigate to Start | All Programs | Accessories, and
then click on the Windows PowerShell folder and then on the Windows PowerShell shortcut.

Unless otherwise specifi ed in the Getting ready section, all of the recipes in this chapter will
require the use of the Exchange Management Shell.

Remember to start the Exchange Management Shell using Run As Admin
to avoid permission problems.

In this chapter, notice that in the examples of cmdlets, I have used the
back tick (`) character for breaking up long commands into multiple lines.
The purpose of this is to make it easier to read. The back ticks are not
required and should only be used if needed.

Granting users full access permissions to
mailboxes

One of the most common administrative tasks that Exchange administrators need to perform
is managing the access rights to one or more mailboxes. For example, you may have several
users that share access to an individual mailbox, or you may have administrators and help
desk staff that need to be able to open end users and mailboxes when troubleshooting
a problem or providing technical support. In this recipe, you'll learn how to assign the
permissions required to perform these tasks through the Exchange Management Shell.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

321

How to do it...
To assign full access rights for an individual user to a specifi c mailbox, use the
Add-MailboxPermission cmdlet :

Add-MailboxPermission -Identity dsmith `

-User hlawson `

-AccessRights FullAccess

After running this command, the user hlawson will be able to open the mailbox belonging to
dsmith and read or modify the data within the mailbox.

How it works...
When you assign full access rights to a mailbox, you may notice that the change does not
take effect immediately, and the user that has been granted permissions to a mailbox still
cannot access that resource. This is because the Information Store service uses a cached
mailbox confi guration that, by default, is only refreshed every two hours. You can force the
cache to refresh by restarting the Information Store service on the mailbox server that is
hosting the active database where the mailbox resides. Obviously, this is not something
that should be done during business hours on production servers, as it will disrupt mailbox
access for end users.

Since we can grant permissions to a mailbox using the Add-MailboxPermission
cmdlet, you would be correct when assuming that this change can also be reversed
if needed. To remove the permissions assigned in the previous example, use the
 Remove-MailboxPermission cmdlet:

Remove-MailboxPermission -Identity dsmith `

-User hlawson `

-AccessRights FullAccess `

-Confirm:$false

In addition to assigning full access permissions to individual users, you can also assign this
right to a group:

Add-MailboxPermission -Identity dsmith `

-User "IT Help Desk" `

-AccessRights FullAccess

In this example, the IT Help Desk is a mail-enabled universal security group, and it has
been granted full access to the dsmith mailbox. All users who are members of this group
will be able to open the mailbox and access its contents through Outlook or OWA.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

322

Of course, you may need to do this for multiple users, and doing so one mailbox at a time
is not very effi cient. To make this a little easier, we can make use of a simple pipeline
command. For example, let's say that you want to grant full access rights to all mailboxes in
the organization:

Get-MailboxDatabase |

 Add-ADPermission –User support `

 -AccessRights GenericAll

The given command retrieves all user mailboxes in the organization, and sends them down
the pipeline to the Add-MailboxPermission cmdlet, where full access rights are assigned
to the IT Help Desk group.

There's more...
If you need to assign access permissions to all the mailboxes in your organization, you
probably should consider doing this at the database level rather than on an individual mailbox
basis. In the previous example, we used a pipeline operation to apply the permissions to
all mailboxes with a one-liner. The limitation with this is that the command only sets the
permissions on the existing mailboxes; any new mailbox created afterwards will not inherit
these permissions. You can solve this problem by assigning the GenericAll extended right
to a user or group on a particular database.

For example, if all of our mailboxes are located in the DB01 database, we can allow user
access to every mailbox in the database using the following command:

Add-ADPermission -Identity DB01 `

-User support `

-AccessRights GenericAll

After running this command, the support account will be able to log on to every mailbox in the
DB01 database as well as any mailboxes created in that database in the future.

Of course, you'll likely have more than one database in your organization. If you want
to apply this setting to every mailbox database in the organization, pipe the output from
the Get-MailboxDatabase cmdlet to the Add-ADPermission cmdlet using the
appropriate parameters:

Get-MailboxDatabase |

 Add-ADPermission –User support `

 -AccessRights GenericAll

Once this command has been run, the user account support will be able to connect to any
mailbox in the Exchange organization.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

323

See also
  The Sending e-mail messages as another user or group recipe

Finding users with full access to mailboxes
One of the issues with assigning full mailbox access to users and support personnel is that
things change over time. People change roles, move to other departments, or even leave the
organization. Keeping track of all of this and removing full access permissions when required
can be challenging in a fast-paced environment. This recipe will allow you to solve that issue
using the Exchange Management Shell to fi nd out exactly who has full access permissions for
the mailboxes in your environment.

How to do it...
To fi nd all of the users or groups who have been assigned full access rights to a mailbox, use
the Get-MailboxPermission cmdlet:

Get-MailboxPermission -Identity administrator |

 Where-Object {$_.AccessRights -like "*FullAccess*"}

You can see here that we are limiting the results using a fi lter by piping the output to the
 Where-Object cmdlet. Only the users with the FullAccess access rights will be returned.

How it works...
The previous command is useful for quickly viewing the permissions for a single mailbox while
working interactively in the shell. The fi rst problem with this approach is that it also returns
a lot of information that we're probably not interested in. Consider the following truncated
output from our previous command:

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

324

Notice that both the IT Help Desk and sysadmin have full access permissions to the
administrator mailbox. This is useful because we know that someone assigned these
permissions to the mailbox, as this is not something Exchange is going to do on its own. What
is not so useful is that we also see all of the built-in full access permissions that apply to every
mailbox, such as the NT AUTHORITY\SELF and other default permissions. To fi lter out this
information, we can use a more complex fi lter:

Get-MailboxPermission administrator |

 Where-Object {

 ($_.AccessRights -like "*FullAccess*") `

 -and ($_.User -notlike "NT AUTHORITY\SELF") `

 -and ($_.IsInherited -eq $false)

 }

You can see that we're still fi ltering based on the AccessRights property, but now we're
excluding the SELF account and any other accounts that receive their permissions through
inheritance. The output now gives us something that's a little easier to work with when
reviewing a report:

This is an easy way to fi gure out which accounts have been assigned full access to a mailbox
via the Add-MailboxPermission cmdlet. Keep in mind that users who have been assigned
these permissions at the database level receive their permissions through inheritance, so you
may need to adjust the fi lter to meet your specifi c needs.

There's more...
Finding out which users have full access rights to an individual mailbox can be useful for quick
troubleshooting, but chances are you're going to need to fi gure this out for all the mailboxes in
your organization. The following code will generate the output that provides this information:

foreach($mailbox in Get-Mailbox -ResultSize Unlimited) {

 Get-MailboxPermission $mailbox |

 Where-Object {

 ($_.AccessRights -like "*FullAccess*") `

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

325

 -and ($_.User -notlike "NT AUTHORITY\SELF") `

 -and ($_.IsInherited -eq $false)

 }

}

As you can see here, we use a foreach loop to process all of the mailboxes in the
organization. Inside the loop, we're using the same fi lter from the previous example to
determine which users have full access rights to each mailbox.

Sending e-mail messages as another user or
group

In some environments, it may be required to allow users to send e-mail messages from
a mailbox as if the owner of that mailbox had actually sent this message. This can be
accomplished by granting Send-As permissions to a user on a particular mailbox. In addition,
you can also allow a user to send e-mail messages that are sent using the identity of a
distribution group. This recipe explains how you can manage these permissions from the
Exchange Management Shell.

How to do it...
To assign Send-As permissions to a mailbox, we use the Add-ADPermission cmdlet:

Add-ADPermission -Identity "Frank Howe" `

-User "Eric Cook" `

-ExtendedRights Send-As

After running the previous command, Eric Cook can send messages from Frank
Howe's mailbox.

How it works...
The Add-ADPermission cmdlet uses the -Identity parameter to classify the object to
which you will assign the permissions. Unlike many of the Exchange cmdlets, you cannot
use the alias of the mailbox when assigning a value to the -Identity parameter. You can
use the user's display name, as shown previously, as long as it is unique, or you can use the
distinguished name of the object. If you do not know a user's full name, you can use the
Get-Mailbox cmdlet and pipe the object to the Add-ADPermission cmdlet:

Get-Mailbox fhowe |

 Add-ADPermission -User ecook -ExtendedRights Send -As

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

326

You might fi nd this syntax useful when assigning the Send-As right in bulk. For example, to
grant a user Send-As permission for all users in a particular OU, use the following syntax:

Get-Mailbox -OrganizationalUnit contoso.com/Sales |

 Add-ADPermission -User ecook -ExtendedRights Send-As

If you ever need to remove these settings, simply use the Remove-ADPermission cmdlet.
This command will remove the permissions assigned in the fi rst example:

Remove-ADPermission -Identity "Frank Howe" `

-User ecook `

-ExtendedRights Send-As `

-Confirm:$false

There's more...
To assign Send-As permissions to a distribution group, the process is exactly the same as for
a mailbox. Use the Add-ADPermission cmdlet:

Add-ADPermission -Identity Marketing `

-User ecook `

-ExtendedRights Send-As

You can also provide the identity of the group to the Add-ADPermission cmdlet via a
pipeline command, just as we saw earlier with the Get-Mailbox cmdlet. To do this with a
distribution group, use the Get-DistributionGroup cmdlet:

Get-DistributionGroup -ResultSize Unlimited |

 Add-ADPermission -User ecook -ExtendedRights Send-As

In the given example, the user ecook is given the Send-As right for all the distribution groups
in the organization.

Working with Role Based Access Control
(RBAC)

The security model that was introduced in Exchange 2010 is still present in Exchange 2013.
 With the introduction of the Role Based Access Control (RBAC) permissions model, you can
essentially determine which cmdlets administrators and end users are allowed to use in
order to change settings within the system. This recipe will show you how to work with the
predefi ned RBAC permissions in Exchange 2013.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

327

How to do it...
Let's say that you need to allow a member of your staff to manage the settings of the Exchange
servers in your organization. This administrator only needs to manage server settings, and
should not be allowed to perform any other tasks, such as recipient management.

Exchange 2013 provides a large set of predefi ned permissions that can be used to address
common tasks like this. In this case, we can use the Server Management role group that
allows administrators to manage the servers in the organization.

All we need to do to assign the permission is to add the required user account to this
role group:

Add-RoleGroupMember -Identity "Server Management" -Member bwelch

At this point, the user can use the Exchange Management Console or the Exchange
Management Shell to perform server-related management tasks.

How it works...
Exchange 2013 implements RBAC by grouping sets of cmdlets used to perform specifi c
tasks into management roles. Think of a management role simply as a list of cmdlets.
For example, one of the roles assigned via the Server Management role group is called
Exchange Servers. This role allows an assigned user the ability to use over 30 separate
cmdlets that are specifi cally related to managing servers, such as Get-ExchangeServer,
Set-ExchangeServer, and more.

There are a number of built-in role groups that you can use to delegate typical management
tasks to the administrators in your environment. You can view all of the built-in role groups
using the Get-RoleGroup cmdlet .

Role groups can assign many different management roles to a user. In the previous example,
we were working with the Server Management role group, which assigns a number of
different management roles to any user that is added to this group. To view a list of these
roles, we can use the Get-ManagementRoleAssignment cmdlet:

Get-ManagementRoleAssignment -RoleAssignee 'Server Management' |

 Select-Object Role

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

328

The output from this command is shown in the following screenshot:

As you can see, each management role assigned through this role group is returned.
To determine which cmdlets are made available by each of these roles, we can run the
Get-ManagementRoleEntry cmdlet against each of them individually. An example of
this can be seen in the following screenshot:

Management role entries are listed in the format of <Role Name>\<Cmdlet Name>.
The Get-ManagementRoleEntry cmdlet can be used with wildcards, as shown with the
previous command. The output from the Get-ManagementRoleEntry command in the
previous example is truncated for readability, but as you can see, there are several cmdlets
that are part of the Exchange Servers management role, which can be assigned via the
Server Management role group. If only this role is assigned to a user, they are given access
to these specifi c cmdlets and will not see other cmdlets, such as New-Mailbox, as that is
part of another management role.

To view all of the management roles that exist in the organization, use the
Get-ManagementRole cmdlet. You can then use the Get-ManagementRoleEntry
cmdlet to determine which cmdlets belong to that role.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

329

There's more...
Many of the management roles installed with Exchange 2013 can be assigned to users by
adding them to a role group. Role groups are associated with management roles through
something called role assignments . Although the recommended method of assigning
permissions is through the use of role groups, you can still directly assign a management role
to a user with the New-ManagementRoleAssignment cmdlet:

New-ManagementRoleAssignment -Role 'Mailbox Import Export' `

-User administrator

In this example, the administrator is assigned the Mailbox Import Export role, which
is not associated with any of the built-in role groups. In this case, we can create a direct
assignment as shown previously, or use the –SecurityGroup parameter to assign this role
to an existing role group or a custom role group created with the New-RoleGroup cmdlet.

RBAC is for end users too
Everything we've discussed so far is related to RBAC for administrators, but end users need
to be able to run cmdlets too. Now, this doesn't mean that they need to fi re up EMS and start
executing commands, but other things that they change will require the use of PowerShell
cmdlets behind the scenes.

A good example of this is the Exchange Control Panel (ECP) . When a user logs into ECP, the
very fi rst thing they see is the Account Information screen that allows them to change various
settings that apply to their user account, such as their address, city, state, zip code, and
phone numbers. When users change this information in ECP, those changes are carried out in
the background with Exchange Management Shell cmdlets.

Here's the confusing part. End users are also assigned permissions from management
roles, but not through role groups or role assignments, as they are applied to administrators.
Instead, end users are assigned their management roles through something called a role
assignment policy .

When you install Exchange, a single role assignment policy is created. Mailboxes that are
created or moved over to Exchange 2013 will use the Default Role Assignment Policy
role group, which gives users some basic rights, such as modifying their contact information,
creating inbox rules through ECP, and more.

To determine which management roles are applied to the default role assignment policy, use
the following command:

Get-RoleAssignmentPolicy "Default Role Assignment Policy" |

 Format-List AssignedRoles

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

330

See also
  The Creating a custom RBAC role for administrators recipe

  The Creating a custom RBAC role for end users recipe

  Troubleshooting Role Based Access Control recipe

Creating a custom RBAC role for
administrators

Sometimes, the management roles that are installed by Exchange are not specifi c enough to
meet your needs. When you are faced with this issue, the solution is to create a custom RBAC
role. The process can be a little tricky, but the level of granular control that you can achieve
is quite astounding. This recipe will show you how to create a custom RBAC role that can be
assigned to administrators based on a very specifi c set of requirements.

How to do it...
Let's say that your company has decided that a group of support personnel should be
responsible for the creation of all new Exchange recipients. You want to be very specifi c
about what type of access this group will be granted, and you plan on implementing a custom
management role based on the following requirements:

  Support personnel should be able to create Exchange recipients in the Employees OU
in the Active Directory

  Support personnel should not be able to create Exchange recipients in any other OU
in the Active Directory

  Support personnel should not be able to remove recipients in the Employees OU, or
any other OU in the Active Directory

Use the following steps to implement a custom RBAC role for the support group based on the
previous requirements:

1. First, we need to create a new custom management role:

New-ManagementRole -Name "Employee Recipient Creation" `

-Parent "Mail Recipient Creation"

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

331

2. Next, we need to modify the role so that the support staff cannot remove recipients
from the organization:

Get-ManagementRoleEntry "Employee Recipient Creation*" |

 Where-Object {$_.name -like "remove-*"} |

 Remove-ManagementRoleEntry -Confirm:$false

3. Now we need to scope this role to a specifi c location in Active Directory:

New-ManagementScope -Name Employees `

-RecipientRoot contoso.com/Employees `

-RecipientRestrictionFilter {

 (RecipientType -eq "UserMailbox") -or

 (RecipientType -eq "MailUser") -or

 (RecipientType -eq "MailContact")

}

4. Finally, we can create a custom role group and add the support staff as members:

New-RoleGroup -Name Support `

-Roles "Employee Recipient Creation" `

-CustomRecipientWriteScope Employees `

-Members bjacobs,dgreen,jgordon

How it works...
The built-in management roles cannot be modifi ed, so, when we want to customize an existing
role to meet our needs, we need to create a new custom role based on an existing parent role.
Since we know that the built-in Mail Recipient Creation role provides the cmdlets that
our support group will need, the fi rst thing we must do is create a new role as a child of the
Mail Recipient Creation role, called Employee Recipient Creation.

One of the requirements in our scenario was that support personnel should not be able
to remove recipients from the organization, so we edited our custom role to get rid of any
cmdlets that could be used to remove recipients from the Employees OU, or from any
other location in the Active Directory. We used the Remove-ManagementRoleEntry
cmdlet to delete all of the Remove-* cmdlets from our custom role, and therefore,
this will prevent users assigned to the custom role from removing recipient objects.

Next, we created a management scope that defi nes what the support group can access. We
used the New-ManagementScope cmdlet to create the Employee management scope. As
you can see from the command, we specifi ed the recipient root as the Employees OU, as per
the requirements in our scenario. When specifying a RecipientRoot, we are also required
to specify a RecipientRestrictionFilter, which will be limited to the UserMailbox,
MailUser, and MailContact recipient types.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

332

Finally, we created our management role group using the New-RoleGroup cmdlet . The
command used created a role group named Support, which created a universal security
group in the Microsoft Exchange Security Groups OU in Active Directory. The role group was
created using the Employees management scope, limiting access to the Employees OU.
Also, notice that we added three users to the group using the -Members parameter. Doing
it this way automatically creates the management role assignment for us. You can view
management role assignments using the Get-ManagementRoleAssignment cmdlet.

There's more...
One of the things making custom RBAC role assignments so powerful is the use of the
management scope. When we created the Employees management scope, we used
the -RecipientRestrictionFilter parameter to limit the types of recipients that
would apply to that scope. When creating the role group, we specifi ed this scope using the
-CustomRecipientWriteScope parameter. This locks the administrator down to only
writing to recipient objects that match the scope's fi lter and recipient root.

Keep in mind that scopes can be created with a ServerRestrictionFilter, and role
groups and role assignments can be confi gured to use these scopes by assigning them to the
CustomConfigWriteScope parameter. This can be useful when assigning custom RBAC
roles for administrators who will be working on servers, as opposed to recipients. For example,
instead of limiting your staff to working with recipient objects in a specifi c OU, you could create
a custom role that only applies to specifi c servers in your organization, such as ones that are
located in another city or another Active Directory site.

See also
  The Working with Role Based Access Control (RBAC) recipe

  The Creating a custom RBAC role for end users recipe

  The Troubleshooting Role Based Access Control recipe

Creating a custom RBAC role for end users
Like custom RBAC roles for administrators, you can also create custom roles that apply to your
end users. This may be useful when you need to allow them to modify additional confi guration
settings that apply to their own accounts through the Exchange Control Panel (ECP). This
recipe will provide a real-world example of how you might implement a custom RBAC role for
end users in your Exchange organization.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

333

How to do it...
When users log on to ECP, they have the ability to modify their work phone number, their fax
number, their home phone number, and their mobile phone number, among other things. Let's
say that we need to limit this so that they can only update their home phone number, as their
work, fax, and mobile numbers will be managed by the administrators in your organization.

Since built-in roles cannot be modifi ed, we need to create a custom role based on one of the
existing built-in roles. Use the following steps to implement a custom RBAC role for end users
based on the previous requirements:

1. The MyContactInformation role allows end users to modify their contact
information, so we'll create a new custom role based on this parent role:

New-ManagementRole -Name MyContactInfo `

-Parent MyContactInformation

2. The Set-User cmdlet is what executes in the background when users modify their
contact information. This is done using several parameters made available through
this cmdlet. We'll create an array that contains all of these parameters so we can
modify them later:

$parameters = Get-ManagementRoleEntry "MyContactInfo\Set-User" |

 Select-Object -ExpandProperty parameters

3. Next, we'll create a new array that excludes the parameters that allow the end users
to change their business related phone numbers:

$parameters = $parameters |

 Where-Object{

 ($_ -ne "Phone") -and `

 ($_ -ne "MobilePhone") -and `

 ($_ -ne "Fax")

 }

4. Now we'll modify the Set-User cmdlet so that it only provides our custom list
of parameters:

Set-ManagementRoleEntry –Identity "MyContactInfo\Set-User" `

-Parameters $parameters

5. The MyContactInformation role is assigned to end users through the default role
assignment policy, so we need to remove that assignment from the policy:

Remove-ManagementRoleAssignment -Identity `

"MyContactInformation-Default Role Assignment Policy" `

-Confirm:$false

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

334

6. Finally, we can add our custom RBAC role to the default role assignment policy:

New-ManagementRoleAssignment -Role MyContactInfo `

-Policy "Default Role Assignment Policy"

When users log in to ECP, they'll only be able to modify their home phone numbers.

How it works...
As you can see from these steps, not only do management roles provide users with access to
cmdlets, but also to specifi c parameters available on those cmdlets. We're able to limit the
use of the Set-User cmdlet by removing access to the parameters that allow users to modify
properties of their account that we do not want them to change.

End user management roles are assigned through a role assignment policy. By default, only
one role assignment policy is created when you deploy Exchange 2013, called the Default
Role Assignment Policy. In the fi rst example, we created a custom role based on
the existing MyContactInformation role that allows end users to update their personal
contact details.

One of the questions you may be asking at this point is how did we determine that the
MyContactInformation role was the one that needed to be modifi ed? Well, we can
come to this conclusion by fi rst checking which roles assign the Set-User cmdlet with
the -Phone parameter:

All of the built-in end user management roles are prefi xed with My, and as you can see from
the previous output, the only two roles that apply here are listed at the bottom. Now we need
to check the default role assignment policy:

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

335

As you can clearly see from the output, the only roles assigned to the end users that contain
the Set-User cmdlet are assigned by the MyContactInformation role, and we know that
this is the role that needs to be replaced with a custom role.

There's more...
If you don't want to modify the existing role assignment policy, you can create a new role
assignment policy that can be applied to individual users. This may be useful if you need to
test things without affecting other users. To do this, use the New-RoleAssignmentPolicy
cmdlet and specify a name for the policy and all the roles that should be applied via this role
assignment policy:

New-RoleAssignmentPolicy -Name MyCustomPolicy `

-Roles MyDistributionGroupMembership,

MyBaseOptions,

MyTeamMailboxes,

MyTextMessaging,

MyVoiceMail,

MyContactInfo

Once this is complete, you can assign the role assignment policy to an individual user with the
Set-Mailbox cmdlet:

Set-Mailbox -Identity "Ramon Shaffer" `

-RoleAssignmentPolicy MyCustomPolicy

If you later decide that this new policy should be used for all of your end users, you'll need
to do two things. First, you'll need to set this role assignment policy as the default policy for
new mailboxes:

Set-RoleAssignmentPolicy MyCustomPolicy -IsDefault

Then you'll need to modify the existing users so that they'll be assigned the new role
assignment policy:

Get-Mailbox -ResultSize Unlimited |

 Set-Mailbox -RoleAssignmentPolicy MyCustomPolicy

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

336

See also
  The Working with Role Based Access Control (RBAC) recipe

  The Creating a custom RBAC role for administrators recipe

  The Troubleshooting Role Based Access Control recipe

Troubleshooting Role Based Access Control
Troubleshooting permission issues can be challenging, especially if you've implemented
custom RBAC roles. In this recipe, we'll take a look at some useful troubleshooting techniques
that can be used to troubleshoot issues related to RBAC.

How to do it...
There are several scenarios in which you can use the Exchange Management Shell cmdlets to
solve problems with RBAC, and there are a couple of cmdlets that you'll need to use to do this.
The following steps outline the solutions for some common troubleshooting situations:

1. To determine which management roles have been assigned to a user, use the
following command syntax:

Get-ManagementRoleAssignment -GetEffectiveUsers |

 Where-Object {$_.EffectiveUserName -eq 'sysadmin'}

2. To retrieve a list of users that have been assigned a specifi c management role, run
the following command and specify a role name, such as the Legal Hold role, as
shown next:

Get-ManagementRoleAssignment -Role 'Legal Hold' -GetEffectiveUsers

3. You can determine if a user has write access to a recipient, server, or database. For
example, use the following syntax to determine if the sysadmin account has the
ability to modify the Dave Jones mailbox:

Get-ManagementRoleAssignment -WritableRecipient djones `

-GetEffectiveUsers |

 Where-Object{$_.EffectiveUserName -eq 'sysadmin'}

After running the previous command, any roles that give the sysadmin write access to the
specifi ed recipient will be returned.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

337

How it works...
The Get-ManagementRoleAssignment cmdlet is a useful tool when it comes to
troubleshooting RBAC issues. If an administrator is unable to modify a recipient or make a
change against a server, it is very possible that the role assignment is either incorrect or it
might not exist at all. In each step shown previously, we used the -GetEffectiveUsers
parameter with this cmdlet, which provides a quick way to fi nd out if certain roles have been
assigned to a specifi c user.

In addition to the -WritableRecipient parameter, you have the option of using either the
-WritableServer or -WritableDatabase parameters. These can be used to determine
if an administrator has write access to a server or database object. This can be useful in
determining if a role assignment has not been made for an administrator that should be able
to modify one of these objects. You can also use this as a method of determining if some
administrators have been granted too much control in your environment.

There's more...
If someone is not receiving the permissions you think they should, they may not be a
member of the required role group. The steps outlined previously should help you make this
determination, but it may be as simple as making sure the administrator has been added to
the right role group that will assign the appropriate roles. You can retrieve the members of a
role group in the shell using the Get-RoleGroupMember cmdlet. This command will return
 all the members of the Organization Management role group:

Get-RoleGroup 'Organization Management' | Get-RoleGroupMember

You can also use these cmdlets to generate a report of all the members of each role group.
For example, this will display the member of each role group in the shell:

foreach($rg in Get-RoleGroup) {

 Get-RoleGroupMember $rg |

 Select-Object Name,@{n="RoleGroup";e={$rg.Name}}

}

See also
  The Working with Role Based Access Control (RBAC) recipe

  The Creating a custom RBAC role for administrators recipe

  The Creating a custom RBAC role for end users recipe

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

338

Generating a certifi cate request
In order to create a new certifi cate, you need to generate a certifi cate request using either the
Exchange Admin Center, or through the shell using the New-ExchangeCertificate cmdlet.
Once you have a certifi cate request generated, you can obtain a certifi cate from an internal
Certifi cate Authority or a third-party external Certifi cate Authority. In this recipe, we'll take a look
at the process of generating a certifi cate request from the Exchange Management Shell.

How to do it...
1. In this example, we'll generate a request using two Subject Alternative Names (SANs).

This will allow us to support multiple URLs with one certifi cate:

$cert = New-ExchangeCertificate -GenerateRequest `

-SubjectName "c=US, o=Contoso, cn=mail.contoso.com" `

-DomainName autodiscover.contoso.com,mail.contoso.com `

-PrivateKeyExportable $true

2. After the request has been generated, we can export it to a fi le that can be used to
submit a request to a certifi cate authority:

$cert | Out-File c:\cert_request.txt

How it works...
When you install Exchange 2013, self-signed certifi cates are automatically generated and
installed to encrypt data passed between servers. Since these self-signed certifi cates will
not be trusted by your client machines when accessing the CAS role, it is recommended that
you replace these certifi cates with new certifi cates issued from a trusted certifi cate authority.
If you do not replace these certifi cates, clients such as Outlook 2013 and Outlook Web App
users will receive certifi cate warnings informing them that the certifi cates are not issued from
a trusted source. This can create some confusion for end users and could generate calls to
your help desk.

You can get around these certifi cate warnings by installing the server's self-signed certifi cates
in the Trusted Root Certifi cate Authority store on the client machines, but even in a small
environment, this can become an administrative headache. That's why it is recommended to
replace the self-signed certifi cates before placing your Exchange 2013 servers into production.

When using the New-ExchangeCertificate cmdlet to generate a certifi cate request,
you can use the -SubjectName parameter to specify the common name of the certifi cate.
This value is set using an X.500 distinguished name, and as you saw in step 2, the common
name for the certifi cate was set to mail.contoso.com. If you do not provide a value for the
-SubjectName parameter, the hostname of the server where the cmdlet is run to generate
the request will be used.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

339

The -DomainName parameter is used to defi ne one or more FQDNs that will be listed in the
Subject Alternative Names fi eld of the certifi cate. This allows you to generate certifi cates that
support multiple FQDNs that can be installed on multiple Exchange servers. For example,
you may have several CAS servers in your environment and instead of generating multiple
certifi cates for each one, you can simply add Subject Alternative Names to cover all of the
possible FQDNs that users will need to access, and then install a single certifi cate on multiple
CAS servers.

The New-ExchangeCertificate cmdlet outputs a certifi cate request in Base64 format.
In the previous example, we saved the output of the command in a variable so we could
simply output the data to a text fi le. Once the request is generated, you'll need to supply the
data from this request to the issuing Certifi cate Authority (CA) . This is usually done through
a web form hosted by the CA where you submit the certifi cate request. You can simply open
the request fi le in Notepad, copy the data, and paste it into the submission form on the CA
website. Once the information is submitted, the CA will generate a certifi cate that can be
downloaded and installed on your servers. See the next recipe in this chapter titled Installing
certifi cates and enabling services for steps on how to complete this process.

There's more...
It's recommended as a best practice that you limit the number of Subject Alternative Names
on your certifi cates, so your name space design should be completely defi ned before creating
your certifi cates. For example, let's say that you've got four CAS servers in a CAS array and
all of your servers are located in a single Active Directory site. Even though you have multiple
servers, you only need to include the FQDNs that your end users will use to access these
servers. If you confi gure your CAS URLs appropriately, there's no requirement to include the
server's FQDN or hostname as a Subject Alternative Name in this scenario.

If you plan on installing a certifi cate on multiple servers, make sure that you mark the certifi cate
as exportable by setting the -PrivateKeyExportable parameter to $true. This will allow
you to export the certifi cate and install it on the remaining servers in your environment.

See also
  The Installing certifi cates and enabled services recipe

  The Importing certifi cates on multiple exchange servers recipe

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

340

Installing certifi cates and enabling services
After you've generated a certifi cate request and have obtained a certifi cate from a
certifi cate authority, you will need to install the certifi cate on your server using the
Import-ExchangeCertificate cmdlet. This recipe will show you how to install
certifi cates issued from a certifi cate authority and how to assign services to the
certifi cate using the Exchange Management Shell.

How to do it...
1. Let's say that you have requested and downloaded a certifi cate from an Active

Directory Enterprise CA and downloaded the fi le to the root of C:\. First, read the
certifi cate data into a variable in the shell:

$certificate = Get-Content -Path c:\certnew.cer `

-Encoding Byte `

-ReadCount 0

2. Next, we can import the certifi cate and complete the pending request:

Import-ExchangeCertificate -FileData $certificate

3. Now that the certifi cate is installed, we can enable it for specifi c services:

Get-ExchangeCertificate -DomainName mail.contoso.com |

 Enable-ExchangeCertificate -Services IIS,SMTP

At this point, the certifi cate has been installed and will now be used for Client Access services,
such as Outlook Web App and the Exchange Control Panel, and also for securing SMTP.

How it works...
Since the Exchange Management Shell uses remote PowerShell sessions, the
Import-ExchangeCertificate cmdlet cannot use a local fi le path to import a certifi cate
fi le. This is because the cmdlet could be running on any server within your organization and a
local fi le path may not exist. This is why we need to use the -FileData parameter to provide
the actual data of the certifi cate. In step 1, we read the certifi cate data into a byte array using
the Get-Content cmdlet, which is a PowerShell core cmdlet, and is not run through the
remote shell on the Exchange server. The content of the certifi cate is stored as a byte array
in the $certificate variable, and we can assign this data to the -FileData parameter of
the Import-ExchangeCertificate cmdlet that allows us to import the certifi cate to any
Exchange server through the remote shell.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

341

Use the -Server parameter with the Get-ExchangeCertificate
cmdlet to target a specifi c server. Otherwise, the cmdlet will run against
the server you are currently connected to.

There's more...
As shown previously, once the certifi cate has been imported, it needs to have one or more
services assigned before it can be used by an Exchange server. After importing a certifi cate,
you can use the Get-ExchangeCertificate cmdlet to view it:

You can see that we have two certifi cates installed. When assigning services to a certifi cate, we
need to be specifi c about which one needs to be modifi ed. We can do this either by specifying
the thumbprint of the certifi cate when running the Enable-ExchangeCertificate cmdlet,
or by using the method shown previously, where we used the Get-ExchangeCertificate
cmdlet with the -DomainName parameter to retrieve a particular certifi cate, and send it down
the pipeline to the Enable-ExchangeCertificate cmdlet .

Let's say that we're connected to a server named EXCH01. We've imported a certifi cate, and
now we need to view all of the installed certifi cates so we can fi gure out which one needs
to be enabled and assigned the appropriate services. We can do this by viewing a few key
properties of each certifi cate using the Get-ExchangeCertificate cmdlet:

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

342

Here you can see that we've retrieved the Thumbprint, CertificateDomains, and
assigned Services for each installed Exchange certifi cate in list format. We've also selected
the IsSelfSign ed property that will tell us whether or not the certifi cate was issued from a
certifi cate authority or installed by Exchange as a self-signed certifi cate. It's pretty clear from
the output that the second certifi cate in the list is the one that was issued from a certifi cate
authority, since the IsSelfSigned property is set to $false. At this point, we can use the
certifi cate thumbprint to assign services to this certifi cate:

Enable-ExchangeCertificate `

-Thumbprint CF61E66A6BE1A286471B30DFCEA1126F6BC7DCBB `

-Services IIS,SMTP

If you have multiple certifi cates installed, especially with duplicate domain names, use the
method shown here to assign services based on the certifi cate thumbprint. Otherwise, you may
fi nd it easier to enable certifi cates based on the domain name, as shown in the fi rst example.

See also
  The Importing certifi cates on multiple exchange servers recipe

  The Generating a certifi cate request recipe

Importing certifi cates on multiple exchange
servers

If your environment contains multiple Exchange servers, you'll likely want to use the
same certifi cate on multiple servers. If you have a large amount of servers, importing
certifi cates one at a time, even with the Exchange Management Shell, could end up being
quite time-consuming. This recipe will provide a method for automating this process using
the Exchange Management Shell.

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

343

How to do it...
Once you've gone through the process of generating a certifi cate request, installing a certifi cate,
and assigning the services on one server, you can export that certifi cate and deploy it to your
remaining servers. The following steps outline the process of exporting an installed certifi cate on
a server named CAS1 and importing that certifi cate on a server named CAS2:

1. In order to export a certifi cate, we'll fi rst need to assign a password to secure the
private key that will be exported with the certifi cate:

$password = ConvertTo-SecureString -String P@ssword `

-AsPlainText `

-Force

2. Now we can export the certifi cate data with the Export-ExchangeCertificate
cmdlet. We'll retrieve the certifi cate from the CAS1 server and export the data to a
binary-encoded value stored in a variable:

$cert = Get-ExchangeCertificate `
-DomainName mail.contoso.com -Server cas1 |
 Export-ExchangeCertificate –BinaryEncoded:$true `
 -Password $password

3. Next, we can import the certifi cate fi le data into the CAS2 server as a certifi cate:

Import-ExchangeCertificate -FileData $cert.FileData `

-Password $password `

-Server cas2

4. Finally, we can assign the services to the certifi cate that was recently imported on the
CAS2 server:

Get-ExchangeCertificate `

-DomainName mail.contoso.com -Server cas2 |

 Enable-ExchangeCertificate -Services IIS,SMTP

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

344

How it works...
As you can see from these steps, exporting a certifi cate from one server and importing it on
an additional server is rather complex, and would be even more so if you want to do this on 5
to 10 servers. If this is a common task that needs to be done frequently, then it makes sense
to automate it even further. The following PowerShell function will automate the process of
exporting a certifi cate from a source server and will import the certifi cate on one or more
target servers:

function Deploy-ExchangeCertificate {

 param(

 $SourceServer,

 $Thumbprint,

 $TargetServer,

 $Password,

 $Services

)

 $password = ConvertTo-SecureString -String $Password `

 -AsPlainText `

 -Force

 $cert = Get-ExchangeCertificate -Thumbprint $Thumbprint `

 -Server $SourceServer |

 Export-ExchangeCertificate –BinaryEncoded:$true `

 -Password $Password

 foreach($Server in $TargetServer) {

 Import-ExchangeCertificate -FileData $cert.FileData `

 -Password $Password `

 -Server $Server

 Enable-ExchangeCertificate -Thumbprint $Thumbprint `

 -Server $Server `

 -Services $Services `

 -Confirm:$false `

 -Force

 }

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Chapter 10

345

This function allows you to specify a certifi cate that has been properly set up and installed on
a source server, and then deploy that certifi cate and enable a specifi ed list of services on one
or more servers. The function accepts a number of parameters and requires that you specify
the thumbprint of the certifi cate that you want to deploy.

Let's say that you've got a Client Access server array that contains six CAS servers. You've
gone through the certifi cate generation process, obtained the certifi cate from a trusted
certifi cate authority, and installed the certifi cate on the fi rst CAS server. Now you can add
the Deploy-ExchangeCertificate function to your PowerShell session and deploy the
certifi cate to the remaining servers in the array.

First, you need to determine the thumbprint on the source server you want to deploy, and
you can do this using the Get-ExchangeCertificate cmdlet. The next step is to run the
function with the following syntax:

Deploy-ExchangeCertificate -SourceServer cas1 `

-TargetServer cas2,cas3,cas4,cas5,cas6 `

-Thumbprint DE4382508E325D27D2D48033509EE5F9C621A07B `

-Services IIS,SMTP `

-Password P@ssw0rd

The function will export the certifi cate on the CAS1 server with the thumbprint value assigned
to the -Thumbprint parameter. The value assigned to the -Password parameter will be
used to secure the private key when the certifi cate data is exported. The certifi cate will then
be installed on the fi ve remaining CAS servers in the array, and will have the IIS and SMTP
services assigned.

There's more...
You may want to export your certifi cates to an external fi le that can be used to import the
certifi cate on another server at a later time. For example:

$password = ConvertTo-SecureString `

-String P@ssword `

-AsPlainText `

-Force

$file = Get-ExchangeCertificate `

-Thumbprint DE4382508E325D27D2D48033509EE5F9C621A07B `

–Server cas1 |

 Export-ExchangeCertificate –BinaryEncoded:$true `

 -Password $password

Set-Content -Path c:\cert.pfx -Value $file.FileData -Encoding Byte

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Exchange Security

346

This is similar to the previous examples, except this time we're exporting the certifi cate data to
an external .pfx fi le.

You can use the following commands to import this certifi cate at a later time on another
server in your environment:

$password = ConvertTo-SecureString `

-String P@ssword `

-AsPlainText `

-Force

$filedata = Get-Content -Path c:\cert.pfx -Encoding Byte -ReadCount 0

Import-ExchangeCertificate -FileData ([Byte[]]$filedata) `

-Password $password `

-Server cas2

This will import the certifi cate from the external .pfx fi le to the CAS2 server. Once this is
complete, you can use the Enable-ExchangeCertificate cmdlet to assign the required
services to the certifi cate.

See also
  The Generating a certifi cate request recipe

  The Installing certifi cates and enabling services recipe

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

www.packtpub.com/microsoft-exchange-server-2013-powershell-

Where to buy this book
You can buy Microsoft Exchange Server 2013 PowerShell Cookbook Second Edition
from the Packt Publishing website: http://www.packtpub.com/microsoft-
exchange-server-2013-powershell-2e-cookbook/book.
Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/microsoft-exchange-server-2013-powershell-

2e-cookbook/book

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
www.packtpub.com/microsoft-exchange-server-2013-powershell-

	www.packtpub.com/microsoft-exchange-server-2013-powershell-2e-cookbook/book

